
MATH 3A WEEK III
VECTOR SPACES

PAUL L. BAILEY

1. Introduction to Abstraction

Mathematics may be described as the study of patterns; not only patterns
that arise is the real universe, but of all possible patterns that may arise in any
universe.

Abstraction is the process of identifying the key attributes in a system and
extracting them; these key attributes may be called defining properties. Then one
investigates the implications of these attributes, disembodied from the system
which originally motivated their investigation. The investigation is rigorous,
and all conclusions drawn are supported purely by logic, not by the physical
world. This support is called proof. Together, abstraction and proof are the
mathematical method; they allow us to isolate and study patterns.

This method has three main benefits.
(1) The proof aspect ensures that all claims made are true (given the as-

sumptions); additionally, it is often the proof itself that illuminates the
situation so that we understand it more fully.

(2) The abstraction allows one to see exactly how the identified key at-
tributes lead to the behavior being displayed in the motivating system.

(3) All results apply to any system which obeys the defining properties.
For example, the set R of real numbers has many attributes which effect how

we think of them, for example:
• Order
• Distance
• Algebra

Although these attributes are interelated in the case of the real numbers, by
looking at systems which a priori have only order, distance, or algebra, we obtain
a better understanding of how these attributes effect our understanding of the
real numbers.

In particular, we will see that in the case of vector spaces, the abstracted
properties are so universal that they appear repeatedly in various forms, and we
benefit from the abstraction we now make.

We use standard English and assume the laws of logic as determined by truth
tables, a preliminary knowledge of set theory, and the basic algebraic proper-
ties of the sets N, Z, Q, and R. We make no other assumptions, and proceed
to develop a complete theory from this starting point. In our examples and
applications, however, we may assume previous knowledge, such as calculus.

Date: September 1, 1998.

1



2

2. Vector Spaces

Definition 1. A vector space over R is a set V together with a pair of operations

+ : V × V → V and · : R× V → V,

called vector addition and scalar multiplication respectively, satisfying
(V1) v + w = w + v for all v, w ∈ V ;
(V2) v + (w + x) = (v + w) + x for all v, w, x ∈ V ;
(V3) there exists 0V ∈ V such that v + 0V = v for all v ∈ V ;
(V4) for every v ∈ V there exists w ∈ V such that v + w = 0V ;
(V5) 1 · v = v for every v ∈ V ;
(V6) (ab)v = a(bv) for every v ∈ V and a, b ∈ R;
(V7) a(v + w) = av + aw for every v, w ∈ V and a ∈ R;
(V8) (a + b)v = av + bv for every v ∈ V and a ∈ R.

The elements of V are called vectors.

Remark 1. The · is usually suppressed in this notation (as in (V6), (V7), and
(V8)); scalar multiplication is instead denoted by juxtiposition.

Remark 2. Elements are added two at a time. However, because of property
(V2), parentheses are useless to distinguish the order of addition. That is,

v1 + · · ·+ vn

makes sense without inserting parentheses to denote the order in which the
elements are added, since any order gives the same result.

Remark 3. In the absense of parentheses, the operations of vector addition and
scalar multiplication are written with · having higher precedence over +. For
example, if a, b ∈ R and v, w ∈ V , ax + by means (ax) + (by).
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3. Examples of Vector Spaces

Example 1. Let V = {0}. Then V is called the trivial vector space.

Example 2. Let R be the set of real numbers, together with their standard
addition and multiplication.
Then R is a vector space.

Example 3. Let Rn be the set of ordered n-tuples of real numbers, together
with vector addition and scalar multiplication as defined previously.
Then Rn is a vector space.

Example 4. Let V ⊂ Rn be a subspace of Rn under our previous interpretation,
together with vector addition and scalar multiplication from Rn.
Then V is a vector space.

Example 5. Let Mm×n be the set of m×n matrices with real entries, together
with matrix addition and scalar multiplication as defined previously.
Then Mm×n is a vector space.

Example 6. Let I ⊂ R be an open interval. Let F(I) = {f : I → R} be the set
of all functions from I into R. Note that we have specified such a function if we
specify its value at every point in I. Define addition and scalar multiplication
by

(f + g)(t) = f(t) + g(t) where f, g ∈ F(I), t ∈ I;
(af)(t) = a(f(t)) where f ∈ F(I), a ∈ R, t ∈ I.

Then F(I), together with these operations, is a vector space.

Example 7. Let P denote the set of all polynomial functions with real coeffi-
cients, and for each n ∈ N, let Pn denote the set of all polynomial functions of
degree less than or equal to n with real coefficients:

P = {f : R → R | f(x) = a0 + a1x + · · ·+ anxn where ai ∈ R;n ∈ N};
Pn = {f ∈ P | deg(f) ≤ n}.

Define addition and scalar multiplication on these sets as in the case of F(I).
Then P and Pn, together with these operations, are vector spaces.

Example 8. Let V and W be vector spaces. Define vector addition and scalar
multiplication on the cartesian product V ×W by

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2);

a(v, w) = (av, aw).
Then V ×W , together with these operations, is a vector space. Indeed, this is
exactly how Rn is constructed from R.
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4. Properties of Vector Addition and Scalar Multiplication

Proposition 1. Let V be a vector space. Suppose that there exists 01, 02 ∈ V
such that v + 01 = v and v + 02 = v for every v ∈ V . Then 01 = 02.

Proof. We have 01 = 01 + 02 = 02 + 01 = 02. �

Remark 4. This proposition says the the additive identity is unique.

Proposition 2. Let V be a vector space and let v ∈ V . Suppose that there exists
w1 and w2 such that v + w1 = 0V and v + w2 = 0V . Then w1 = w2.

Proof. Since v + w1 = 0V , we have w2 + (v + w1) = w2 + 0V . By (V2) on
the left and (V3) on the right, we have, (w2 + v) + w1 = w2. By property
(V1), (v + w2) + w1 = w2, and by assumption on w2, this gives 0V + w1 = w2.
By property (V2), w1 + 0V = w2, and finally by property (V3) we obtain
w1 = w2. �

Remark 5. This proposition says that additive inverses are unique. We denote
the unique additive inverse of v by −v. We shorten w + (−v) to w − v.

Proposition 3. (Cancellation Law)
Let V be a vector space and let v, w, x ∈ V . Then v + x = w + x ⇒ v = w.

Proof. Add −x to both sides. �

Proposition 4. Let V be a vector space. Let v ∈ V and a ∈ R. Then
(a) 0v = 0V ;
(b) a0V = 0V ;
(c) av = 0V ⇒ a = 0 or v = 0V ;
(d) (−1)v = −v;
(e) (−a)v = −(av).

Proof.
(a) We have v + (0v) = (1v) + (0v) = (1 + 0)v = 1v = v; thus 0v acts like the

additive identity, so it must be the additive identity by uniqueness.
(b) If a = 0, the result follows from (a), so assume a 6= 0. We have v+(a0V ) =

(aa−1)v + a0V = a(a−1v) + a0V = a(a−1v + 0V ) = a(a−1v) = v; thus v + (a0V )
acts like the additive identity, so it must be the additive identity.

(c) Exercise.
(d) Since 1v = v, this is a special case of (d).
(e) We have av + (−a)v = (a + (−a))v = 0v = 0V ; thus (−a)v acts like the

additive inverse of a, so it must be the additive inverse of v by uniqueness. �

Remark 6. We now drop the subscript from 0V and just write 0. We distinguish
this from 0 ∈ R by context.
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5. Subspaces

Definition 2. Let V be a vector space.
A subspace of V is a subset W ⊂ V which satisfies:
(S0) 0 ∈ W ;
(S1) x, y ∈ W ⇒ x + y ∈ W ;
(S2) a ∈ R, x ∈ W ⇒ ax ∈ W .
If W is a subspace of V , this is denoted by W ≤ V .

Remark 7. If W ≤ V , then W is a vector space under the same operations of
addition and scalar multiplication. If is clear that if U ≤ W and W ≤ V , then
U ≤ W .

Remark 8. Consider the condition
(SE) W is nonempty.

In the presence of (S1) and (S2), we see that (SE) is equivalent to (S0). Clearly,
if 0 ∈ W , then W is nonempty. On the other hand, suppose that W is nonempty.
Then W contains a vector, say w ∈ W . By (S2), we see that 0w = 0 ∈ W .

Example 9. Let V be a vector space; then there exists a zero element 0 ∈ V ,
and {0} ≤ V ; this is called the trivial subspace.

Example 10. Let V = R3 and let W = {(x1, x2, x3) ∈ V | x1 + x2 + x3 = 0}.
Show that W ≤ V .

Solution. To show that W is a subspace of V , we verify the three properties of
being a subspace.

(S0) We wish to show that 0V ∈ W . Since 0 + 0 + 0 = 0, we see that
(0, 0, 0) = 0V ∈ W .

(S1) We wish to show that the sum of two elements in W is also an element
in W . Let x, y ∈ W . Then x, y ∈ R3, so x = (x1, x2, x3) and y = (y1, y2, y2) for
some real numbers x1, x2, x3, y1, y2, y3 ∈ R. By definition of W , x1 +x2 +x3 = 0
and y1 + y2 + y3 = 0. Adding these equations and rearranging via properties
(V1) and (V2) of V , we see that (x1 + y1) + (x2 + y2) + (x3 + y3) = 0. Thus
x+ y = (x1 + y1, x2 + y2, x3 + y3) satisfies the defining condition of W , and must
be an element of W .

(S2) We wish to show that any scalar multiple of an element in W is also an
element in W . Let x = (x1, x2, x3) ∈ W and let a ∈ R. Then x1 + x2 + x3 = 0,
so a(x1 + x2 + x3) = a0 = 0; by distributing, we get ax1 + ax2 + ax3 = 0. Thus
ax = (ax1, ax2, ax3) ∈ W . �

Example 11. Fix n ∈ N. Then Pn ≤ P.

Example 12. Fix m,n ∈ N with m ≤ n. Then Pm ≤ Pn.

Example 13. A function f : I → R is called smooth if it is infinitely dif-
ferentiable on the interval I; that is, if derivatives of all orders exist and are
continuous. The following are subspaces of F(I):

• C(I) = {f ∈ F(I) | f is continuous} ;
• D(I) = {f ∈ F(I) | f is smooth} .

Note that D(I) ≤ C(I) ≤ F(I).
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Proposition 5. Let V be a vector space and let W1,W2 ≤ V .
Then W1 ∩W2 ≤ V .

Proof. We verify the three properties of a subspace.
(S0) Since 0 ∈ W1 and 0 ∈ W2, we have 0 ∈ W1 ∩W2.
(S1) Let x, y ∈ W1 ∩W2. Then x, y ∈ W1 and x, y ∈ W2, so x + y ∈ W1 and

x + y ∈ W2, because both of these sets are subspaces. Thus x + y ∈ W1 ∩W2.
(S2) Let x ∈ W1 ∩W2 and let a ∈ R. Then x ∈ W1 and x ∈ W2, and since

these are subspaces, we see that ax ∈ W1 and ax ∈ W2. Thus ax ∈ W1 ∩W2.
Therefore W1 ∩W2 ≤ V . �

Remark 9. This argument generalizes so that the intersection of any number
(even infinitely many) of subspaces is a subspace.

Definition 3. Let V be a vector space and let X, Y ⊂ V . Define the sum of
these sets to be the subset of V given by

X + Y = {x + y | x ∈ X, y ∈ Y }.

Proposition 6. Let V be a vector space and let W1,W2 ≤ V .
Then W1 + W2 ≤ V .

Proof. We verify the three properties of a subspace.
(S0) Since 0 ∈ W1 and 0 ∈ W2, we see that 0 = 0 + 0 ∈ W1 + W2.
(S1) Let w1, w

′
1 ∈ W1 and w2, w

′
2 ∈ W2 so that w1 + w2 and w′

1 + w′
2 are

arbitrary members of W1 + W2. Then (w1 + w2) + (w′
1 + w′

2) = (w1 + w′
1) +

(w2 +w′
2) ∈ W1 +W2, by properties (V1) and (V2) of V and by property (S1)

of W1 and W2.
(S2) Let w1 ∈ W1 and w2 ∈ W2 so that w1 + w2 is an arbitrary member of

W1 + W2 Let a ∈ R. Then a(w1 + w2) = aw1 + aw2 ∈ W1 + W2, by property
(V7) of V and property (S2) of W1 and W2. �

Remark 10. It follows that any finite sum of subspaces is a subspace.
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6. Spans

Definition 4. Let V be a vector space and let X ⊂ V .
A linear combination of elements from X is an element of V of the form

a1v1 + · · ·+ anvn where ai ∈ R and vi ∈ X.

The span of X is denoted by span(X) and is defined by

span(X) = {v ∈ V | v is a linear combination from X}.
The span of the empty set is defined to be {0}.
Proposition 7. Let V be a vector space and let X, Y ⊂ V . Then

(a) 0 ∈ span(X);
(b) X ⊂ span(X) ⊂ V ;
(c) span(X) = span(span(X));
(d) X ⊂ Y ⇒ span(X) ⊂ span(Y );
(e) X ⊂ span(Y ) ⇒ span(X) ⊂ span(Y );
(f) X ≤ V ⇔ X = span(X).

Proof.
(a) If x ∈ X, then 0V = 0x is a linear combination from X.
(b) To show that one set is a subset of another, it suffices to select an arbitrary

element of the one set and show that it is in the other.
Let x ∈ X; then x = 1x, so x is a linear combination from X. Thus x ∈

span(X). Since x was arbitrary, we see that X ⊂ span(X).
Since V is closed under addition and scalar multiplication, every linear com-

bination of vectors from V is also in V . Thus the span of any subset of V is
contained in V , i.e., span(X) ⊂ V .

(c) To show that two sets are equal, we show that each is contained in the
other. By (b), we know that span(X) ⊂ span(span(X)), so we only need to
show that span(span(X)) ⊂ span(X).

Let y ∈ span(span(X)). Then there exist vectors y1, . . . , yn ∈ span(X) and
real number a1, . . . , an ∈ R such that y =

∑n
i=1 aiyi. Each yi is in span(X),

so there exist a finite number (say mi) of vectors xi1, . . . , ximi
∈ X and real

numbers bi1, . . . , bimi such that yi =
∑mi

j=1 bijxij . Then y =
∑n

i=1

∑mi

j=1 aibijxij

is a linear combination from X, so y ∈ span(X).
(d) Suppose that X ⊂ Y . Then every linear combination from X is a linear

combination from Y . Thus span(X) ⊂ span(Y ).
(e) Suppose that X ⊂ span(Y ). Then by (d), span(X) ⊂ span(span(Y )).

But by (c), span(span(Y )) = span(Y ), so span(X) ⊂ span(Y ).
(f) To show an if and only if statement, we show implication in both directions.
(⇒) Suppose that X ≤ V . We know that X ⊂ span(X); we must show that

span(X) ⊂ X.
Let x ∈ span(X). Then x is a linear combination from X. This means that

x is a finite sum of scalar multiples of elements of X. Since X is a subspace,
it is closed under vector addition and scalar multiplication. Thus each scalar
multiple is in X, and the sum of these elements of X is also in X. Thus x ∈ X.

(⇐) Suppose that X = span(X). We have already noted that 0 ∈ X. Let
x1, x2 ∈ X and let a ∈ R. Then x1 + x2 and ax1 are linear combinations from
X, so they are in X since X = span(X). Since X satisfies (S0), (S1), and (S2),
we see that X ≤ V . �
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Definition 5. Let V be a vector space and let X ⊂ V .
We say that X spans V if V = span(X).
We say that V is finitely generated if it is spanned by a finite set of vectors.

Proposition 8. Let V be a vector space and let X, Y ⊂ V .
If X spans V and X ⊂ Y , then Y spans V .

Proof. Suppose that X spans V . Then every element of V is a linear combination
of elements from X. But since X ⊂ Y , all such linear combinations are also linear
combinations from Y . Thus Y spans V . �

Remark 11. Let V be a finitely generated vector space; this means that there
exists a finite set of vectors, say X, such that X spans V . Suppose that Y is
an infinite subset of V which spans V . The sets X and Y may not have any
elements in common. The next proposition tells us than in spite of this, some
finite subset of subset of Y spans V .

Proposition 9. Let V be a finitely generated vector space and let Y ⊂ V such
that Y spans V . Then there exists a finite subset Z of Y such that Z spans V .

Proof. Since V is finitely generated, there exists some finite set

X = {x1, . . . , xn} ⊂ V

such that span(X) = V . But X ⊂ span(Y ), so each of the vector xi ∈ X
may be written as a linear combination of a finite number (say mi) of vectors
zi1, . . . , zimj

∈ Y . Let Z = {zij | i = 1, . . . , n; j = 1, . . . ,mi}. Then Z is a finite
set, and X ⊂ span(Z), so V = span(X) ⊂ span(Z). Since span(Z) ⊂ V , we have
span(Z) = V . �

Example 14. Let V = R3 and let X be any set of vectors with the property
that not all of them lie on the same plane. Then X spans V . Moreover, one
can pick out a finite subset of X which spans V ; soon we will see that one can
choose this set with exactly three elements.

Example 15. Let V = Rn. Let ei denote the vector whose ith entry is equal to
one and whose other entries are equal to zero.
Let X = {e1, . . . , en}. Then X spans V .

Example 16. Let V = Mm×n. Let Mij denote the m × n matrix whose ijth

entry is equal to one and whose other entries are equal to zero.
Let X = {Mij | i = 1, . . . ,m; j = 1, . . . , n}. Then X spans V .

Example 17. Let V = Pn and let X = {1, x, x2, . . . , xn}. Then X spans Pn.

Remark 12. One can show that span(X) is exactly the intersection of all sub-
spaces of V which contain X.
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7. Linear Independence

Definition 6. Let V be a vector space and let X ⊂ V .
We say that X is linearly independent, or simply independent, if whenever

v1, . . . , vn ∈ V are distinct elements of X and a1, . . . , an ∈ R,
n∑

i=1

aivi = 0 ⇒ ai = 0 for i = 1, . . . , n.

In this case we may also say that the vectors in X are linearly independent.
We say that X is linearly dependent, or simply dependent, if it is not indepen-

dent. In this case we may also say that the vectors in X are linearly dependent.

Remark 13. If X ⊂ V is dependent, there exists a nontrivial dependence rela-
tion; by this we mean that there exist distinct elements x1, . . . , xn ∈ X and real
numbers a1, . . . , an, at least one of which is nonzero, such that

a1x1 + · · ·+ anxn = 0.

Clearly, any set containing 0 is dependent.

Proposition 10. Let V be a vector space and let X, Y ⊂ V .
If Y is independent and X ⊂ Y , then X is independent.

Proof. Any nontrivial dependence relation among the elements of X would be a
nontrivial dependence relation among the elements of Y . �

Proposition 11. Let V be a vector space and let X ⊂ V . Then X is independent
if and only if for every finite subset B = {x1, . . . , xn} ⊂ X and every x ∈ span(B)
there exists a unique ordered n-tuple (a1, . . . , an) ∈ Rn such that

x = a1x1 + · · ·+ anxn.

Proof.
(⇒) We prove the contrapositive; suppose that the second condition is false,

and prove that X is dependent. Let B ⊂ X be a finite subset whose span
contains an element x ∈ span(B) which may not be expressed in a unique way
as a linear combination from B. Since x ∈ span(B), there is at least one way to
write it as a linear combination from B; thus the only way the condition can be
false is if this expression is not unique.

Suppose that there exist distinct n-tuples (ai)i and (bi)i such that

x =
n∑

i=1

aixi =
n∑

i=1

bixi.

Subtracting yields
∑n

i=1(bi − ai)xi = 0; but for at least one i, we have ai 6=
bi, so this is a nontrivial dependence relation among the xi’s; thus B is not
independent, so neither is X.

(⇐) Again we prove the contrapositive. Thus we suppose that X is not inde-
pendent. Then there exists some vectors x1, . . . , xn ∈ X and some real numbers
a1, . . . , an, not all zero, such that

∑n
i=1 aixi = 0. Since 0 ∈ span{x1, . . . , xn},

we see that 0 can be written in more than one way as a linear combination of
vectors from X. Thus the second condition is also false. �
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Example 18. Let V = Rn and let X = {e1, . . . , en}.
Then X is independent.

Example 19. Let V = Mm×n and let X = {Mij | i = 1, . . . ,m; j = 1, . . . , n}.
Then X is independent.

Example 20. Let V = Pn and let X = {1, x, x2, . . . , xn}.
Then X is independent.

Proposition 12. Let V be a vector space and let v, w ∈ V with v 6= 0. Then v
and w are linearly dependent if and only if w = cv for some c ∈ R.

Proof. Suppose that v and w are linearly dependent. Then there exists a, b ∈ R,
not both zero, such that av + bw = 0. If a = 0, then bw = 0, so w = 0 (since
b 6= 0), whence w = 0v. Otherwise a 6= 0, and v = − b

aw.
On the other hand, if w = cv, then cv − w = 0 is a nontrival dependence

relation, so v and w are linearly dependent. �

Example 21. Let V = D(I), where I ⊂ R is an open interval. Let f, g ∈ V . If
f and g are linearly dependent, then there exists a constant c such that f(t) =
cg(t) for all t ∈ I. Assuming neither f nor g is the zero function, we see that
c 6= 0. Then f(t) = 0 ⇔ g(t) = 0. Since differentiation is linear, we see that
f ′(t) = 0 ⇔ g′(t) = 0. This continues for all of the derivatives of f and g.

Turning this around, one sees that if there exists t ∈ I such that f and g, or
any of their derivatives, have the property that one is zero at t and the other is
not, then f and g are linearly independent.

Example 22. Let V = R3 and let

v1 = (1, 2,−3), v2 = (2, 0, 1), v3 = (4,−4, 9) ∈ R3.

Show that the set {v1, v2, v3} is dependent.

Solution. If these vectors are indeed linearly dependent, then they all lie on the
same plane in R3. We may choose any one of them, say v3, are try to write it
as a linear combination of the other two. That is, we want to find x1, x2 ∈ R
such that v3 = x1v1 + x2v2. Thinking of these vectors as column vectors, the
equation we want to solve is 4

−4
9

 = x1

 1
2
−3

 + x2

2
0
1

 .

Setting

A =

 1 2
2 0
−3 1

 , x =
[
x1

x2

]
, and b =

 4
−4
9

 ,

we see that this is equivalent to solving the matrix equation Ax = b. We use
Gaussian elimination (this is a relatively easy elimination; do it for practice) to
obtain an alternate matrix equation1 0

0 1
0 0

x =

−2
3
0

 .

Thus x1 = −2 and x2 = 3. �
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The last example does not completely give a test for linear independence.

Example 23. Let V = R3 and let

v1 = (1, 2,−3), v2 = (2, 4,−6), v3 = (4,−4, 9) ∈ R3.

Show that the set {v1, v2, v3} is dependent.

Attempt. We try to write v3 as a linear combination of v1 and v2. But it isn’t!
This is because v1 and v2 lie on the same line; so actually v3 in independent
from v1 or from v2. However, the set is dependent, because 2v1 − v2 + 0v3 = 0
is a nontrivial dependence relation. �

We now give a test for linear independence in Rm. Let X = {v1, . . . , vn} be a
subset of Rm. Form the m× n matrix A by putting the vectors in columns:

A = [v1 | · · · | vn].

If x = [x1, . . . , xn]t is a column vector in Rn, we have seen that

Ax = x1A
(1) + · · ·+ xnA(n)

= x1v1 + · · ·+ xnvn;

that is, Ax is a linear combination of the columns of A. Now Ax = 0 has a
solution other than x = (0, . . . , 0) if and only if there is a nontrivial dependence
relation among the vi’s.

Form matrix Q by performing forward elimination on A, so that Q is in row
echelon form; there is an invertible m × n matrix O such that Q = OA. Since
O0 = 0, we have

Ax = 0 ⇔ OAx = O0 ⇔ Qx = 0.
The solution to Ax = 0 is unique if and only if Q has no free columns; other-
wise, Ax = 0 has a nontrivial (i.e., nonzero) solution, which gives a nontrivial
dependence relation among the columns of A.

Example 24. Let V = R3 and let

v1 = (1, 2,−3), v2 = (2, 0, 1), v3 = (4,−4, 9) ∈ R3.

Show that the set {v1, v2, v3} is dependent.

Solution. Put the vectors in columns of a matrix A, so that

A =

 1 2 4
2 0 −4
−3 1 9

 .

Perform forward elimination on A is arrive at

Q =

1 2 4
0 −4 −12
0 0 0

 .

Since Q has a free column, the vectors are not independent. �



12

8. Bases

Definition 7. Let V be a vector space and let X ⊂ V .
We say that X is a basis for V if

(B1) X spans V ;
(B2) X is independent.

Definition 8. Let V be a vector space and let X ⊂ V .
We say that X is a spanning set for V if X spans V .
We say that X is a minimal spanning set for V if

(M1) X spans V ;
(M2) Y ( X ⇒ span(Y ) ( V .

Proposition 13. Let V be a vector space and let X ⊂ V .
Then X is a basis for V if and only if X is a minimal spanning set for V .

Proof. To prove an if and only if statement, we prove the implication in both
directions. Here it is clearly sufficient to show that (B2) is equivalent to (M2)
in the presence of (B1). Thus suppose that X spans V . We prove the contra-
positive in both directions.

(⇒) Suppose that X is a spanning set which is not minimal. Then there
exists a smaller subset Y ( X which spans. Let x ∈ X r Y ; then x is a linear
combination of vectors in Y , which demonstrates the presence of a nontrivial
dependence relation in X. Thus X is not independent.

(⇐) Suppose that X is a spanning set which is dependent. Then there exists a
nontrivial dependence relation in X. This allows us to select some vector x ∈ X
and write it as a linear combination of the other vectors in X; let Y = X r {x}.
By Proposition 7 (b), Y ⊂ span(Y ); also x ∈ span(Y ), so X = Y ∪ {x} ⊂
span(Y ). Thus by Proposition 7 (e),

V = span(X) ⊂ span(Y ) ⊂ V,

which shows that Y spans V . Thus X is not a minimal spanning set. �

Example 25. Let V = R3 and let W = {(x, y, z) ∈ V | x + y + z = 0}. We
have seen that W ≤ V , so W is a vector space. Actually, W is a plane through
the origin. Let v1 = (1, 0,−1) and v2 = (0, 1,−1) and let X = {v1, v2}. Then
X spans W : if v = (x, y, z) ∈ W , then v = (x, y,−x − y), so v = xv1 + yv2.
However, if we remove either vector from the set, the span of what remains is a
line. Thus this set is a minimal spanning set, and so it is a basis.

Proposition 14. Let V be a vector space and let X ⊂ V .
Then X is a basis for V if and only if every element of V can be written as a
linear combination from X in a unique way.

Proof. Exercise. �
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Proposition 15. Let V be a vector space and let X ⊂ V be independent.
If v ∈ V r span(X), then X ∪ {v} is independent.

Proof. Exercise. �

Proposition 16. Let V be a vector space and let X ⊂ V be a spanning set.
If v ∈ V r X, then Y = X ∪ {v} is dependent.

Proof. If v = 0, there result is immediate. Otherwise, we may write v as a linear
combination of elements in X, so the expression of v as a linear combination of
elements in Y is not unique; thus Y is dependent. �

Proposition 17. Let V be a vector space and let X = {x1, . . . , xn} be a depen-
dent set. Then there exists k ∈ {1, . . . , n} such that xk is a linear combination
from {x1, . . . , xk−1}.

Proof. Since X is dependent, there is a nontrivial dependence relation
n∑

i=1

aixi = 0,

where not all ai’s equal zero. Let k be the largest integer between 1 and n such
that ak 6= 0. Then

xk =
1
ak

k−1∑
i=1

aixi

is a linear combination of the preceding elements. �

Remark 14. Suppose V and X are as above, and note that xn is not neces-
sary dependent on the preceding elements. For example, perhaps V = R3 and
x1, . . . , xn−1 all lie on the same plane, but xn is perpendicular to it.
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Theorem 1. Let V be a finitely generated vector space and let X, Y ⊂ V .
If X is independent and Y spans, then |X| ≤ |Y |.

Proof. By Proposition 9, we may assume that Y is finite, say Y = {y1, . . . , yn}.
By way of contradiction (BWOC), suppose that |X| > n and let

Z = {z1, . . . , zn+1} ⊂ X;

then Z is independent by Proposition 10. Label the elements of Y and Z so that
all of those contained in Y ∩ Z are in the front:

Y = {z1, . . . , zi, yi+1, . . . , yn}.
By Proposition 16, the set

{z1, . . . , zi+1, yi+1, yi+2, . . . , yn}
is dependent. By Proposition 17, one of these vectors is dependent on the preced-
ing ones, and since the z′is are linearly independent, there exists k ∈ {i+1, . . . , n}
such that yk is a linear combination of {z1, . . . , zi+1, yi+1, . . . , yk−1}. Thus if we
remove yk from the set, it will still span:

span{z1, . . . , zi+1, yi+1, . . . , yk−1, yk+1, . . . , yn} = V.

Continuing in this way, adding the next z and removing a y, we see that after
n− i replacements we have

span{z1, . . . , zn} = V.

Thus the set Z = {z1, . . . , zn}∪{zn+1} is dependent by Proposition 16, producing
a contradiction. �

Remark 15. There is an alternate proof of this proposition. Let Z and Y be
as in the above proof. Since Y spans, we have

zj =
n∑

i=1

aijyi for some aij ∈ R.

One may use Gaussian elimination to solve this system of linear equations to
obtain a dependence relation among the z’s. However, for this to be used in a
rigorous proof, one must first give a formal demonstration that Gaussian elimi-
nation works in general.

Corollary 1. (Finite Dimension Theorem)
Let V be a finitely generated vector space. Let X and Y be bases for V .
Then |X| = |Y |.

Proof. Exercise. �
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Example 26. Let V = Rn and let X = {e1, . . . , en}.
Then X is a basis for V .

Example 27. Let V = Mm×n and let X = {Mij | i = 1, . . . ,m; j = 1, . . . , n}.
Then X is a basis V .

Example 28. Let V = Pn and let X = {1, x, x2, . . . , xn}.
Then X is a basis Pn.

Proposition 18. Let V be a finitely generated vector space and let Y ⊂ V be a
spanning set. Then there exists a subset X ⊂ V with X ⊂ Y such that X is a
basis for V .

Proof. Since Y is a spanning set, Y contains a minimal spanning set, say X,
which can be obtained simply by throwing out dependent vectors until none are
left. Then X is a basis by Proposition 13. �

Remark 16. In particular, every finitely generated vector space has a basis.

Proposition 19. Let V be a finitely generated vector space and let X ⊂ V be
independent. Then there exists a subset Y ⊂ V with X ⊂ Y such that Y is a
basis for V .

Proof. If X spans V , we are done.
Otherwise, there exists a vector v which is in V but not in span(X). Form

the set X ∪ {v}; this set is still independent by Proposition 15. Continue this
process until the resulting set spans; this will happen in a finite number of steps
since V is finitely generated. �

Definition 9. Let V be a finitely generated vector space and let X ⊂ V be
independent.

A completion of X is a basis Y for V such that X ⊂ Y .

Example 29. Select any two vectors v1, v2 ∈ R3 that do not lie on the same
line. Then the set X = {v1, v2} is independent. Let v3 be any vector in R3 which
does not lie on the plane spanned by X. Then X ∪ {v3} is a basis for R3.
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9. Dimension

Definition 10. Let V be a vector space.
The dimension of V is the smallest cardinality of a spanning set for V , and

is denoted by dim(V ). The dimension of the trivial vector space is defined to be
zero: dim{0} = 0. If dim(V ) ∈ N, we say that V is finite dimensional.

Remark 17. If V is finitely generated, then Corollary 1 tells us that the dimen-
sion of V is the number of elements in any basis for V . We see that V is finite
dimensional if and only if V is finitely generated.

Example 30. The dimension of Rn is n.

Example 31. The dimension of Mm×n is mn.

Example 32. The dimension of Pn is n + 1.

Example 33. The vector space F(I) is NOT finite dimensional.

Proposition 20. Let V be a vector space. Then V is finite dimensional if and
only if every independent subset is finite.

Proof. If V is finite dimensional, we already know that the cardinality of any
independent set is less than or equal to the dimension of V .

Suppose V is not finite dimensional; then V is not finitely generated. Let
X ⊂ V be finite and independent. Then X does not span V , so there exists a
vector v ∈ V r span(X). The set X ∪ {v} is still independent by Proposition
17. We have taken an arbitrary independent set and produced a bigger one;
continuing in this way we obtain an infinite independent set. �

Proposition 21. Let V be a finite dimensional vector space and let W ≤ V .
Then W is finite dimensional, and dim(W ) ≤ dim(V ).

Proof. Suppose that W is not finite dimensional. Then W has an independent
subset of every cardinality. In particular, it has one whose cardinality is larger
than the dimension of V , which contradicts Theorem 1. Thus W is finite di-
mensional, so W has a basis; this basis is a linearly independent subset of V , so
its cardinality, which is the dimension of W , must be less than or equal to the
dimension of V , again by Theorem 1. �
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Proposition 22. Let V be a finite dimensional vector space and let U,W ≤ V .
Then

dim(U + W ) = dim(U) + dim(W )− dim(U ∩W ).

Proof. Let dim(U) = p, dim(W ) = q, and dim(p + q) = n.
Let X = {x1, . . . , xn} be a basis for U ∩ W . We complete this to a basis

Y = {x1, . . . , xn, u1, . . . , up−n} for U and Z = {x1, . . . , xn, w1, . . . , wq−n} for W .
We see that B = {x1, . . . , xn, u1, . . . , up, w1, . . . , wq} spans U +V . But this is an
independent set. To see this, let a1, . . . , an, b1, . . . , bp, c1, . . . , cq ∈ R such that

n∑
i=1

aixi +
p∑

j=1

bjuj +
q∑

k=1

ckwk = 0.

Then
p∑

j=1

bjuj = −
n∑

i=1

aixj −
q∑

k=1

ckwk.

The sum on the left is in U and the sum on the right is in W , so the sum on the
left is actually in U ∩W . Thus we have d1, . . . , dn such that

p∑
j=1

bjuj =
n∑

i=1

dixi.

Since Y is a basis for U , we see that

b1, . . . , bp = 0.

Similarly the ck’s are all zero, whence the ai’s are all zero. �

Corollary 2. Let V be a vector space and let U ≤ V . Then U = V if and only
if dim(U) = dim(V ).

Proof. Exercise. �

Example 34. Let V = R3.
Let U = span{(1, 2, 0), (2, 1, 0)}, and W = span{(1, 0, 2), (2, 0, 1)}. We see that
U is the xy-plane and W is the xz-plane. The sum of U and W is all of R3.
Their intersection is the x-axis. We see that

dim(U + W ) = 3 = 2 + 2− 1 = dim(U) + dim(W )− dim(U ∩W ).

The proof above indicates that we can change our bases for U and W :
U = span{(1, 0, 0), (2, 1, 0)} and W = span{(0, 0, 1), (2, 0, 1)}, so that the union
of these bases is a basis for U + W .
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10. Exercises

Exercise 1.
FB §3.1 # 1, 2, 3, 7, 8, 9, 12, 14, 15, 17
FB §3.2 # 3, 4, 7, 8, 11, 13, 16, 24
FB §3.2 # 27 through 39 (all are pretty good)

Exercise 2. Let V = R3.
Set v1 = (1,−3, 2), v2 = (3,−7,−1), and v3 = (1, 1, 12).
Show that the set {v1, v2, v3} is linearly dependent.

Exercise 3. Let V be a vector space. Let v ∈ V and a ∈ R.
Show that av = 0V ⇒ a = 0 or v = 0V .

Exercise 4. Let V be a vector space and let X ⊂ V be independent.
Show that if v ∈ V r span(X), then X ∪ {v} is independent.

Exercise 5. Let V be a finitely generated vector space.
Let X and Y be bases for V .
Show that |X| = |Y |.
(Hint: use Theorem 1.)

Exercise 6. Let V be a vector space and let U ≤ V . Show that U = V if and
only if dim(U) = dim(V ).

Exercise 7. Let V = R3 and let a1, a2, a3 ∈ R. Set

W (a1, a2, a3) = {(x1, x2, x3) ∈ R3 | a1x1 + a2x2 + a3x3 = 0}.
(a) Show that W (a1, a2, a3) ≤ V .
(b) Show that the general solution to the matrix equation1 5 4

2 1 0
0 3 1

x1

x2

x3

 =

0
0
0


is a subspace of V .
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